
kaepora Documentation
Release 1.0

Matt Siebert

Oct 03, 2022

Contents

1 Prerequisites 3

2 Downloading/Building the Database 5

3 Querying the Database 7

4 Spectrum Objects 9

5 Schema 11
5.1 Spectral Attributes . 11
5.2 SN Attributes . 11

6 Creating Composite Spectra 13

7 Indices and tables 17

i

ii

kaepora Documentation, Release 1.0

kaepora is an open-source relational database of Type Ia Supernova observations. This guide is meant to outline how
to install and interact with the database. We also provide tools for creating composite spectra using the methods from
Siebert et al. 2019.

Contents:

It appears that the time has finally come for you to start your adventure! You will encounter many hardships ahead. . .
That is your fate. Don’t feel discouraged, even during the toughest times!

Contents 1

https://msiebert1.github.io/publication/2019-05-02-Siebert_2019_MNRAS

kaepora Documentation, Release 1.0

2 Contents

CHAPTER 1

Prerequisites

Python 2.7

numpy

matplotlib

sqlite3

scipy

astropy

specutils

tabulate

Version specific dependencies:

msgpack-python version 0.4.6

msgpack-numpy version 0.3.6

3

kaepora Documentation, Release 1.0

4 Chapter 1. Prerequisites

CHAPTER 2

Downloading/Building the Database

The source code for kaepora can be found at https://github.com/msiebert1/kaepora. First clone the repository using:

git clone https://github.com/msiebert1/kaepora.git

We recommend that you download the most recent version of the database from https://msiebert1.github.io/kaepora/.
Unzip the folder and place the ‘.db’ file in the /data folder of your repository.

Alternatively, you can build the database from source. This process runs several scripts that homogenize the raw
spectral data and takes several hours. If you wish to do this navigate to the /kaepora/src folder and execute the
following command:

python build_kaepora.py

Once you have completed one of these steps you should be ready to interact with the database.

5

https://github.com/msiebert1/kaepora
https://msiebert1.github.io/kaepora/

kaepora Documentation, Release 1.0

6 Chapter 2. Downloading/Building the Database

CHAPTER 3

Querying the Database

The database currently consists of two tables: Spectra and Events. These tables host the spectrum-specific and SN-
specific metadata respectively. Currently the only way to interact with the database is via an SQL join on these tables.
Right now, you should run your code from the /src directory. Our documentation will focus on the routines available
in the kaepora.py. Start by importing this module:

import kaepora as kpora

You can then define an array containing SQL queries and obtain spectra from the database. For example:

example_query = ["SELECT * from Spectra inner join Events ON Spectra.SN = Events.SN
→˓where phase >= -1 and phase <= 1 and ((dm15_source < 1.8) or (dm15_from_fits < 1.8))
→˓"]
spec_array = kpora.grab(example_query[0])

If you would like to remove atypical SNe Ia, SNe with flagged artifacts, and SNe with poor host reddening corrections
use:

spec_array = kpora.grab(example_query[0], make_corr=True)

These spectra have been already been corrected for MW reddening. To correct these spectra for host-galaxy reddening
(and exclude SNe with AV > 2) with a F99 reddening law use:

spec_array = kpora.host_dereddening(spec_array, cutoff=2.)

7

kaepora Documentation, Release 1.0

8 Chapter 3. Querying the Database

CHAPTER 4

Spectrum Objects

spec_array now contains an array of objects that contain our homogenized spectra and all of the spectrum- and
SN-specific metadata. Currently these objects are made to represent single spectra, so objects generated from the
same SNe will contain some redundant SN metadata. These spectra are normalized to their maximum flux. Basic
information on these objects can be viewed with:

for spec in spec_array_dered:
print spec.name, spec.filename, spec.source, spec.phase, spec.wavelength[spec.x1],

→˓ spec.wavelength[spec.x2]

A spectrum and its variance can be plotted with:

import matplotlib.pyplot as plt
fig, ax = plt.subplots(2,1)
example_spec = spec_array_dered[20]
ax[0].plot(example_spec.wavelength, example_spec.flux)
ax[1].plot(example_spec.wavelength, 1/example_spec.ivar)
plt.show()

Below we describe other attributes of these objects that are also queryable parameters of the database.

9

kaepora Documentation, Release 1.0

10 Chapter 4. Spectrum Objects

CHAPTER 5

Schema

5.1 Spectral Attributes

Attribute SQL Format Description Type
name “SN” SN name String
filename “Filename” Filename from data source String
source “Source” Data source String
minwave “Minwave” Minimum wavelength of original spectrum float
maxwave “Maxwave” Maximum wavelength of original spectrum float
SNR “snr” Median S/N of the spectrum float
mjd “MJD” Modified Julian Date of the spectrum float
phase “Phase” Rest-frame days from B-Band maximum float
ref “Ref” Bibtex code String

5.2 SN Attributes

These attributes contain the most metadata. We also include (but do not list) metadata from the results of several
different light curve fits. If you would like to construct a query based on these metadata please contact me.

11

kaepora Documentation, Release 1.0

Attribute SQL Format Description Type
redshift “Redshift” Redshift from NED float
mjd_max “MJD_max” Modified Julian date corresponding to the time of maximum-light float
dm15_source “Dm15_source” Dm15 from the source survey float
dm15_from_fits “Dm15_from_fits” Dm15 calculated from the polynomial relationship with a light-

curve shape parameter
float

e_dm15 “e_dm15” Error in dm15 float
av_25 “Av_25” Estimated host galaxy extinction from an MLCS fit using R_v = 2.5 float
m_b_cfa “M_b_cfa” Absolute B-Band magnitude at maximum light from the CfA sam-

ple
float

m_b_cfa_err “M_b_cfa_err” Error in m_b_cfa float
b_minus_v_cfa “B_minus_V_cfa” B-V color at maximum light float
b_minus_v_cfa_err“B_minus_V_cfa_err”Error in b_minus_v_cfa float
v_at_max “V_at_max” Estimated velocity at maximum light float
v_err “V_err” Error in v_at_max float
ned_host “NED_host” A simplified version of NED host galaxy morphology based on

cross-listed objects
String

carbon “Car-
bon_presence”

‘A’: carbon detected, ‘F’; marginal carbon detected, ‘N’: no carbon
detected

String

hubble_res “Hubble_res” Hubble residual from a SALT fit float

You can view all attributes of the spectrum object with the code below:

spec_attributes = dir(spec_array[0])
print spec_attributes

12 Chapter 5. Schema

CHAPTER 6

Creating Composite Spectra

Here we outline how to generate composite spectra using the methods of Siebert et al. 2019. Start by defining
query_list such that it describes the subset of data that for which you wish to generate a composite spectrum.
Then run the make_composite:

query_list = ["SELECT * from Spectra inner join Events ON Spectra.SN = Events.SN
→˓where phase >= -1 and phase <= 1 and ((dm15_source < 1.8) or (dm15_from_fits < 1.8))
→˓"]
composites, sn_arrays, boot_sn_arrays = kpora.make_composite(query_list, boot=False,
→˓medmean=1, verbose=False, gini_balance=True, combine=True)

This will generate a composite spectrum for each query in query_list and will take of order seconds to minutes
depending on the size of the sample. A composite spectrum is a spectrum object that contains a few more attributes.
phase_array, dm15_array, and red_array contain the weighted averages of phase, dm15, and redshift as a
function of wavelength. sn_arrays contains the list of combined spectrum objects used to construct the composite
spectrum.

Other applications of the available make_composite arguments are listed below

boot = True: estimate the 1-sigma confidence intervals via 100 random resamples of the spectra (this significantly
increases computation time). This will populate the low_conf and up_conf attributes of the composites spectrum
objects. This also populates boot_sn_arrays with a list of composite spectra generated from these resamples.

medmean = 2: a median composite spectrum will be generated.

verbose = True: prints basic information about each spectrum contributing to the composite spectrum.

gini_balance = False: does an inverse-variance weighted average of the original data (this is more susceptible
to high SNR outliers). For more information on our Gini-weighting method please read our paper.

combine = False: does not initially combine spectra from the same SNe.

We also provide a useful plotting function to visualize your composite spectra. This will also output the average
properties of the composite spectra within wavelength ranges defined by set_min_num_spec.

13

https://msiebert1.github.io/publication/2019-XX-XX-Siebert_2019_MNRAS

kaepora Documentation, Release 1.0

import kaepora_plot as kplot
kpora.set_min_num_spec(composites, 5)
kplot.comparison_plot(composites, min_num_show=5)

14 Chapter 6. Creating Composite Spectra

kaepora Documentation, Release 1.0

15

kaepora Documentation, Release 1.0

16 Chapter 6. Creating Composite Spectra

CHAPTER 7

Indices and tables

• genindex

• search

17

	Prerequisites
	Downloading/Building the Database
	Querying the Database
	Spectrum Objects
	Schema
	Spectral Attributes
	SN Attributes

	Creating Composite Spectra
	Indices and tables

